

Please write clearly in block capitals.

Centre number

--	--	--	--	--

Candidate number

--	--	--	--

Surname

Forename(s)

Candidate signature

I declare this is my own work.

GCSE COMBINED SCIENCE: TRILOGY

H

Higher Tier
Chemistry Paper 1H

Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

Information

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

J U N 2 2 8 4 6 4 C 1 H 0 1

IB/M/Jun22/E10

8464/C/1H

There are no questions printed on this page

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**

0 2

IB/M/Jun22/8464/C/1H

0 1

This question is about salts.

Green copper carbonate and sulfuric acid can be used to produce blue copper sulfate crystals.

0 1 . 1

Excess copper carbonate is added to sulfuric acid.

Give **three** observations you would make.

[3 marks]

1 _____

2 _____

3 _____

0 1 . 2

How can the excess copper carbonate be removed?

[1 mark]

0 1 . 3

The pH of the solution changes during the reaction.

What is the pH of the solution at the end of the reaction?

[1 mark]

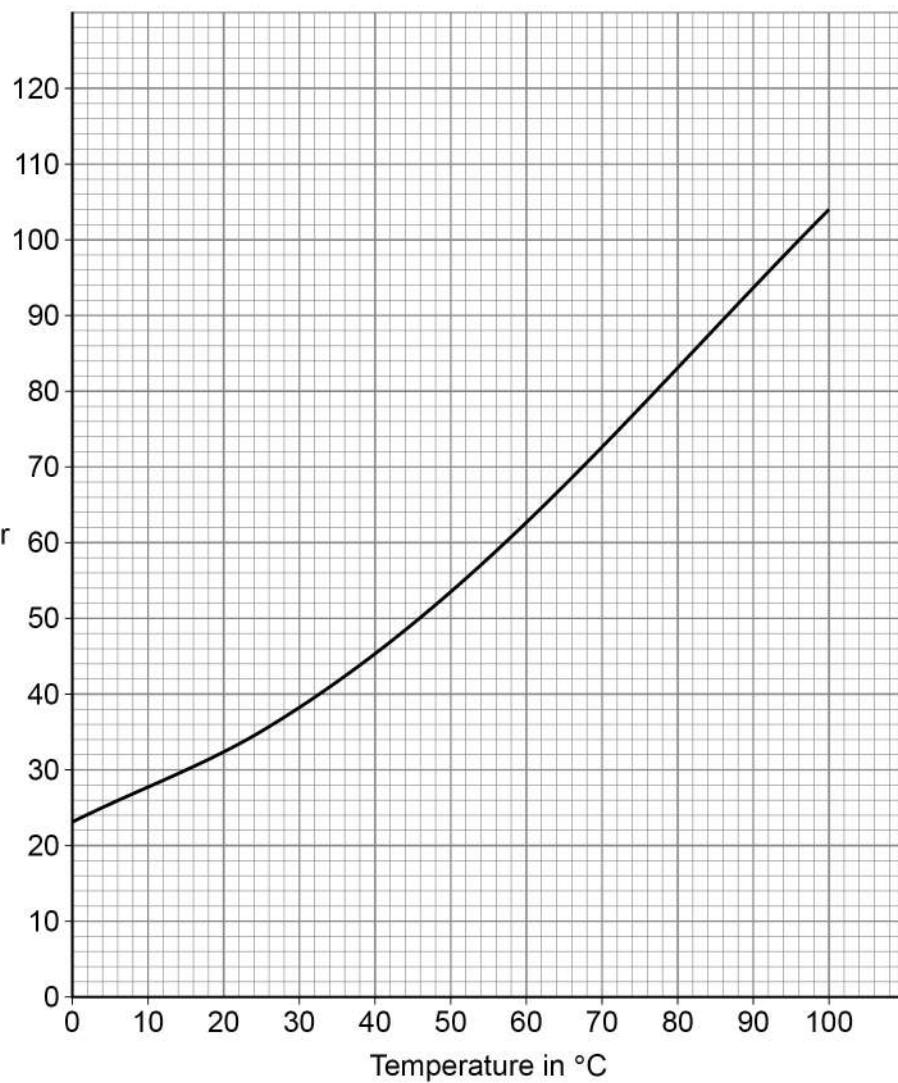
pH = _____

0 1 . 4

Copper carbonate and sulfuric acid react to produce copper sulfate.

What type of reaction is this?

[1 mark]


Turn over ►

0 1 . 5 Ammonium nitrate is a salt.

Figure 1 shows the maximum mass of ammonium nitrate that can dissolve in 100 cm³ of water at different temperatures.

Figure 1

Maximum mass
of ammonium
nitrate that can
dissolve in grams per
100 cm³ of water

A student adds ammonium nitrate to water at 80 °C until no more dissolves.

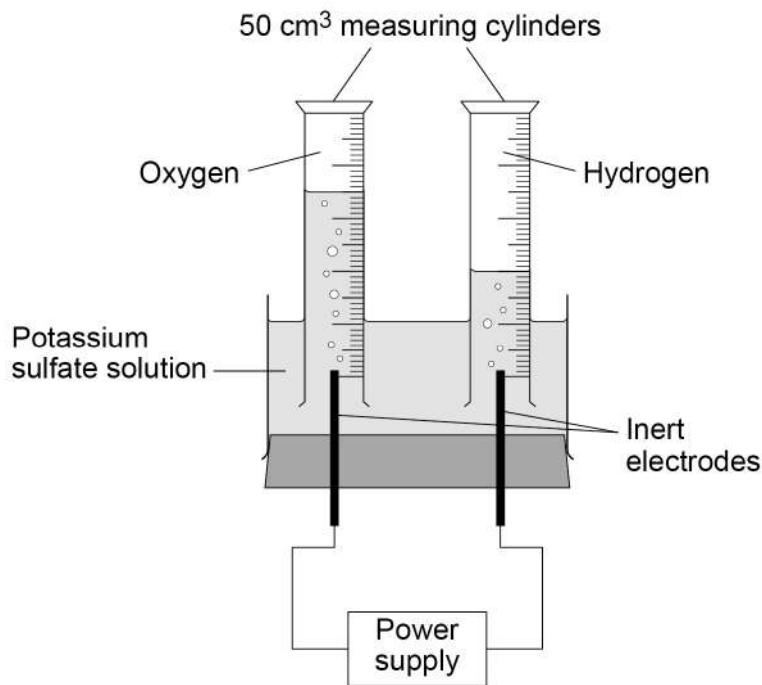
The student cools 100 cm³ of this solution of ammonium nitrate from 80 °C to 20 °C to produce crystals of ammonium nitrate.

Determine the mass of ammonium nitrate that crystallises on cooling 100 cm^3 of this solution from $80\text{ }^\circ\text{C}$ to $20\text{ }^\circ\text{C}$

[3 marks]

Mass = _____ g

9


Turn over for the next question

0 2

This question is about electrolysis.

Figure 2 shows the apparatus used to investigate the electrolysis of potassium sulfate solution.

Figure 2**0 2 . 1**

Potassium sulfate contains K⁺ and SO₄²⁻ ions.

What is the formula of potassium sulfate?

[1 mark]

Tick (✓) one box.

KSO₄

K₂SO₄

K(SO₄)₂

K₂(SO₄)₂

0 6

IB/M/Jun22/8464/C/1H

0 2 . 2 What are the volumes of gases collected in the electrolysis experiment?

Use Figure 2.

[1 mark]

Volume of hydrogen = _____ cm³

Volume of oxygen = _____ cm³

0 2 . 3 A student made the following hypothesis:

'The volumes of gases collected in this electrolysis experiment are in the same ratio as hydrogen atoms to oxygen atoms in a water molecule.'

Explain how the volumes of gases collected in the experiment in **Figure 2** support the student's hypothesis.

Use your answer to Question **02.2**

[2 marks]

Question 2 continues on the next page

Turn over ►

0 2 . 4 The experiment is repeated 4 times.

The volumes of oxygen collected in the 4 experiments are:

6 cm³ 9 cm³ 10 cm³ 11 cm³

The mean volume of oxygen collected in the 4 experiments is 9 cm³

The measure of uncertainty is the range of a set of measurements about the mean.

What is the measure of uncertainty in the 4 experiments?

[1 mark]

Tick (✓) one box.

$9 \pm 1 \text{ cm}^3$

$9 \pm 2 \text{ cm}^3$

$9 \pm 3 \text{ cm}^3$

0 2 . 5 The potassium sulfate solution has 0.86 g of potassium sulfate dissolved in 25 cm³ of water.

Calculate the mass of potassium sulfate needed to make 1.0 dm³ of solution.

[3 marks]

Mass = _____ g

8

0 8

0 | 3

Plan an investigation to find the order of reactivity of three metals.

You should use the temperature change when each metal reacts with hydrochloric acid.

[6 marks]

6

Turn over for the next question

Turn over ►

There are no questions printed on this page

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**

1 0

0 4

This question is about Group 7 elements.

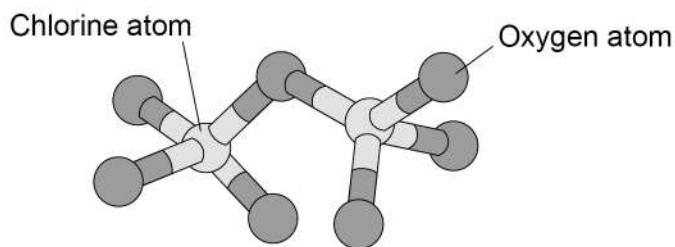
0 4 . 1

What are the Group 7 elements known as?

[1 mark]

0 4 . 2

Why do Group 7 elements react in similar ways?


[1 mark]

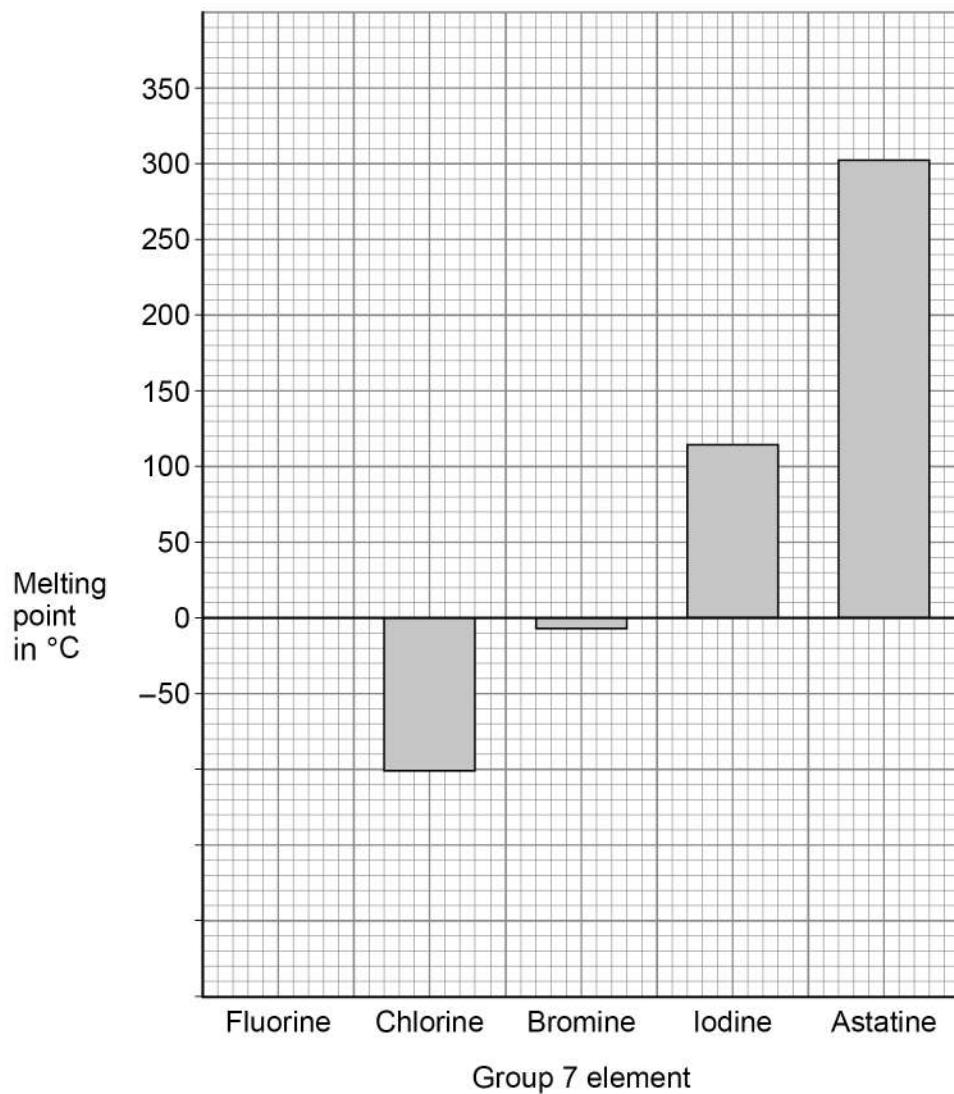
0 4 . 3

Figure 3 shows the structure of a molecule of chlorine oxide.

Figure 3

What is the molecular formula of the chlorine oxide molecule in Figure 3?

[1 mark]



Question 4 continues on the next page

Turn over ►

Figure 4 shows the melting points of some Group 7 elements.

Figure 4

0 4 . 4 The melting point of fluorine is $-220\text{ }^{\circ}\text{C}$

Complete **Figure 4**.

You should:

- complete the scale on the y-axis
- draw the bar for the melting point of fluorine.

[2 marks]

0 4 . 5 Explain the trend in the melting points of the Group 7 elements.

Use **Figure 4**.

[3 marks]

0 4 . 6 What is the state symbol for bromine at -50°C ?

Use **Figure 4**.

[1 mark]

Tick (\checkmark) **one** box.

(aq)

(g)

(l)

(s)

0 4 . 7 Evaporation and boiling occur at the surface of bromine at its boiling point.

Name **one** more process that happens at the surface of bromine at its boiling point.

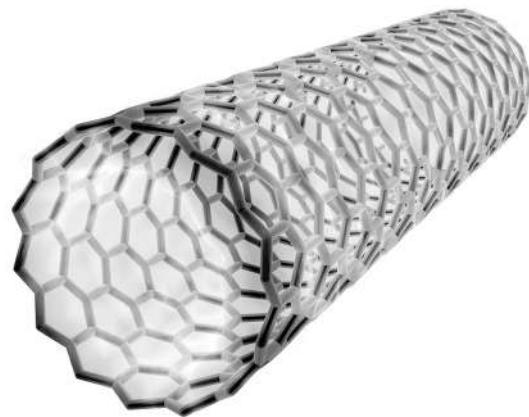
[1 mark]

10

Turn over for the next question

Turn over ►

1 3


0 5

This question is about structure and bonding.

0 5

1 **Figure 5** represents part of a carbon molecule.

Figure 5

Name the type of carbon molecule in **Figure 5**.

[1 mark]

0 5

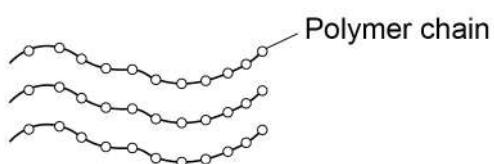
2 Suggest **one** property that makes the carbon molecule in **Figure 5** useful in nanotechnology.

[1 mark]

0 5 . 3 An alloy of aluminium contains small amounts of other metals.

Explain why other metals are added to aluminium.

[4 marks]



0 5 . 4 **Figure 6** represents part of the structure of a polymer.

Figure 6

Compare the bonding within the chains with the forces between the chains in this polymer.

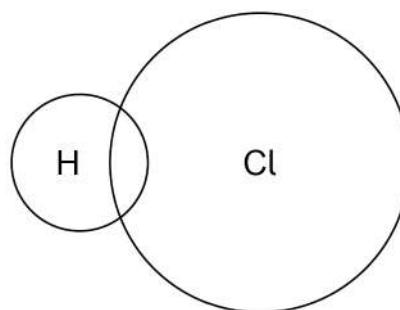
[3 marks]

9

Turn over ►

1 5

0 6


This question is about hydrogen chloride and hydrochloric acid.

0 6 . 1

Complete the dot and cross diagram to represent the bonding in hydrogen chloride on **Figure 7**.

Use dots (o) and crosses (x) to represent electrons.

You should show only the electrons in the outer shells.

[2 marks]**Figure 7****0 6 . 2**

Hydrogen chloride dissolves in water to produce hydrochloric acid.

Hydrochloric acid is a strong acid.

What is meant by the term strong acid?

[1 mark]

0 6 . 3

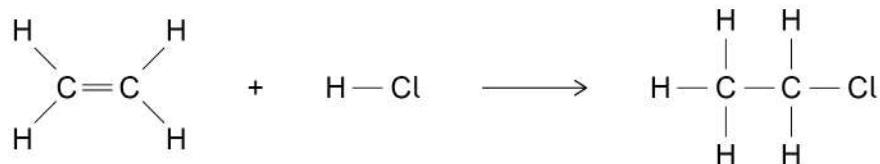
Describe how magnesium can be used to distinguish between a strong acid and a weak acid of the same concentration.

[2 marks]

0 6 . 4 The concentration of hydrochloric acid is increased by a factor of 100

What is the change in pH?

[2 marks]


Question 6 continues on the next page

Turn over ►

0 6 . 5 Ethene and hydrogen chloride react to produce chloroethane.

The displayed formulae equation for the reaction is:

The reaction is exothermic.

In the reaction the energy released forming new bonds is 56 kJ/mol greater than the energy needed to break existing bonds.

Table 1 shows some bond energies.

Table 1

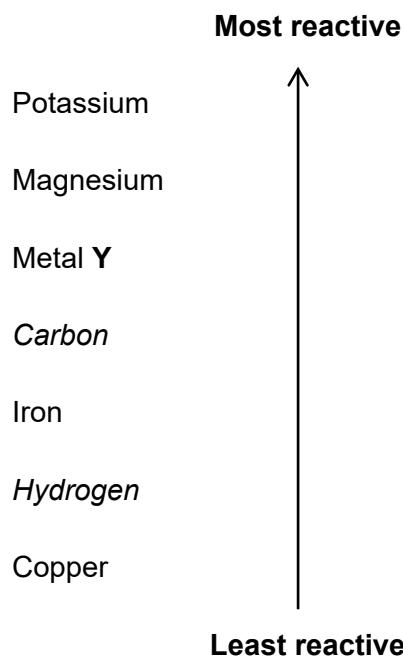
Bond	H–C	C=C	H–Cl	C–C	C–Cl
Bond energy in kJ/mol	413	X	431	346	339

Calculate the bond energy X.

[4 marks]

X = _____ kJ/mol

11


1 8

0 7

This question is about elements and compounds.

0 7 . 1

Figure 8 shows a reactivity series.

Figure 8

Give the method and conditions used to extract metal Y from a compound of metal Y.
[2 marks]

Question 7 continues on the next page

Turn over ►

Sodium reacts with titanium chloride (TiCl_4) to produce titanium.

0 7. 2 Complete the equation.

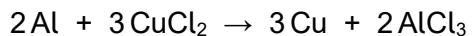
You should balance the equation.

[2 marks]

0 7. 3 The reaction between sodium and titanium chloride is a redox reaction.

Write a half-equation to show that sodium is oxidised in this reaction.

[2 marks]



Do not write outside the box

0 7 . 4 108 g of aluminum reacts with 1.21 kg of copper chloride to produce copper.

The equation for the reaction is:

Calculate the maximum mass of copper produced in grams (g).

You should determine the limiting reactant.

Relative atomic masses (A_r): Al = 27 Cu = 63.5

Relative formula masses (M_r): $\text{CuCl}_2 = 134.5$ $\text{AlCl}_3 = 133.5$

[6 marks]

Limiting reactant is _____

Mass of copper = _____ g

Question 7 continues on the next page

Turn over ►

Sodium metal and sodium chloride are both able to conduct electricity.

0 7 . 5 Describe how sodium metal conducts electricity.

[2 marks]

0 7 . 6 Explain how sodium chloride can conduct electricity.

[3 marks]

17

END OF QUESTIONS

2 2

IB/M/Jun22/8464/C/1H

There are no questions printed on this page

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**

2 3

IB/M/Jun22/8464/C/1H

Question number	<p style="text-align: center;">Additional page, if required. Write the question numbers in the left-hand margin.</p>

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

There are no questions printed on this page

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

2 8

IB/M/Jun22/8464/C/1H