

Please write clearly in block capitals.

Centre number

--	--	--	--	--

Candidate number

--	--	--	--

Surname

Forename(s)

Candidate signature

I declare this is my own work.

GCSE

COMBINED SCIENCE: TRILOGY

H

Higher Tier
Physics Paper 2H

Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

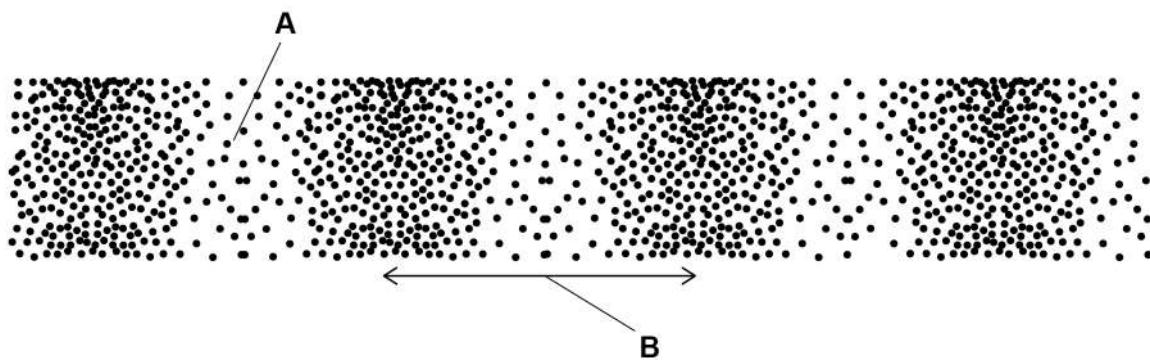
- a protractor
- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

Information


- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

J U N 2 2 8 4 6 4 P 2 H 0 1

IB/M/Jun22/E16

8464/P/2H

0 1**Figure 1** shows a longitudinal wave.**Figure 1****0 1 . 1**What do the labels **A** and **B** on **Figure 1** represent?

Choose answers from the box.

[2 marks]

amplitude	frequency	rarefaction	reflection	wavelength
-----------	-----------	-------------	------------	------------

A _____**B** _____

0 2

0 1 . 2 The wave shown in **Figure 1** has a frequency of 4.0 kHz

Do not write outside the box

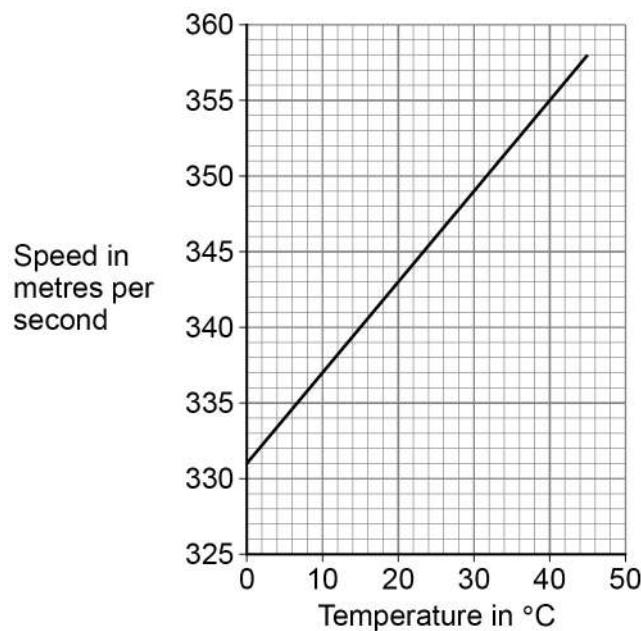
Calculate the period of the wave.

Use the Physics Equations Sheet.

Give the unit.

[4 marks]

Period = _____ Unit _____


Question 1 continues on the next page

Sound waves are longitudinal.

Figure 2 shows how the speed of sound varies with the temperature of the air.

Figure 2

Use the Physics Equations Sheet to answer questions **01.3** and **01.4**.

0 1 . 3 Write down the equation that links frequency (f), wavelength (λ) and wave speed (v).
[1 mark]

0 1 . 4 A sound wave with a frequency of 300 Hz travels through the air.

The air has a temperature of 28.0 °C

Determine the wavelength of the sound wave.

Use **Figure 2**.

[4 marks]

Wavelength = _____ m

11

Turn over for the next question

Turn over ►

0 5

IB/M/Jun22/8464/P/2H

0 2

Figure 3 shows competitors in the wheelchair race at the London Marathon.

Do not write outside the box

The distance of the London Marathon is 42 000 m

Figure 3

0 6

IB/M/Jun22/8464/P/2H

Use the Physics Equations Sheet to answer questions **02.1** and **02.2**.

0 2 . 1 Write down the equation that links distance (s), force (F) and work done (W). **[1 mark]**

0 2 . 2 During the race competitors work against air resistance.

The work done against air resistance by the winner of the race was 3 360 000 J

Calculate the average air resistance acting on the winner of the race.

[3 marks]

Average air resistance = _____ N

Question 2 continues on the next page

Turn over ►

0 7

IB/M/Jun22/8464/P/2H

Use the Physics Equations Sheet to answer questions **02.3** and **02.4**.

0 2 . 3 Which equation links distance travelled, speed and time?

[1 mark]

Tick (✓) **one** box.

distance travelled = speed × time

time = distance travelled × speed

speed = distance travelled × time

0 2 . 4 The distance of the London Marathon is 42 000 m

The winning time for the race was 5600 seconds.

Calculate the average speed of the winner of the race.

[3 marks]

Average speed = _____ m/s

0 2 . 5 Explain why the speed of a competitor changes during the race.

[4 marks]

Do not write outside the box

12

Turn over for the next question

Turn over ►

0 | 3

Figure 4 shows a child playing with a toy train.

The train is on a bridge.

Figure 4

When the child lets go of the train, the train rolls down the bridge.

0 3 . 1 The momentum of the train at the bottom of the bridge is 0.216 kg m/s
mass of the train = 180 g

Calculate the velocity of the train at the bottom of the bridge.

Use the Physics Equations Sheet.

[4 marks]

Velocity = m/s

0 3 . 2 The train collides with a stationary carriage on the track.

Explain why the velocity of the train after the collision is less than it was before the collision.

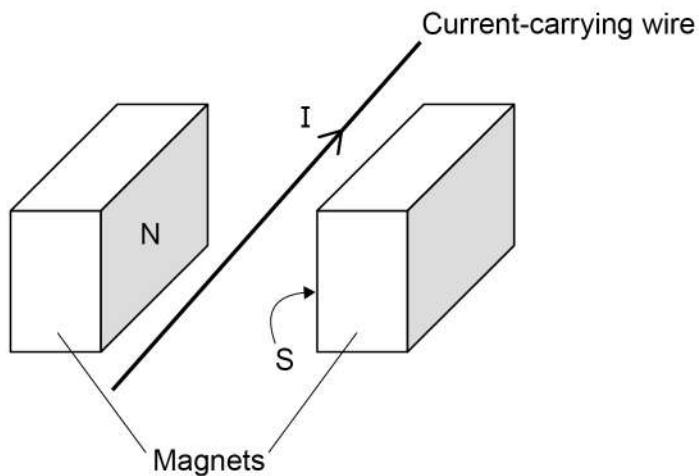
Use ideas about momentum in your answer.

[4 marks]

8

Turn over for the next question

Turn over ►



0 4

A teacher demonstrated the motor effect.

Figure 5 shows the equipment used.

Figure 5

0 4 . 1

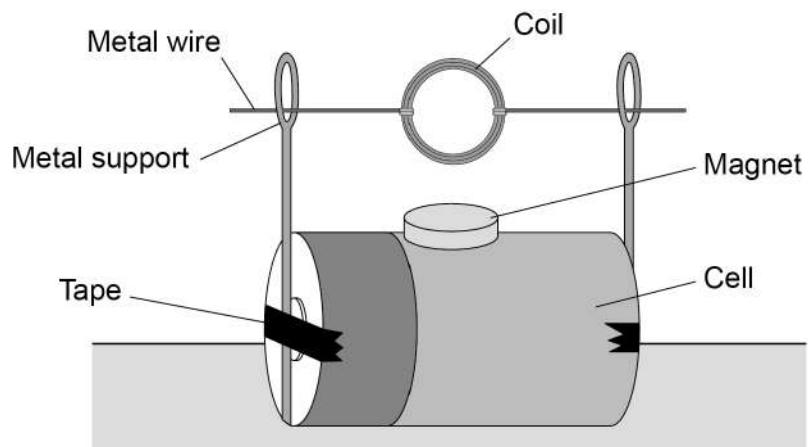
Explain why there is a force on the wire when there is a current in the wire.

[2 marks]

0 4 . 2

Explain how the direction of the force on the wire can be predicted.

[3 marks]



0 4 . 3 **Figure 6** shows a simple electric motor.

Do not write outside the box

Figure 6

Explain **one** way that the motor could be changed to increase the rate at which the coil rotates.

[2 marks]

7

Turn over for the next question

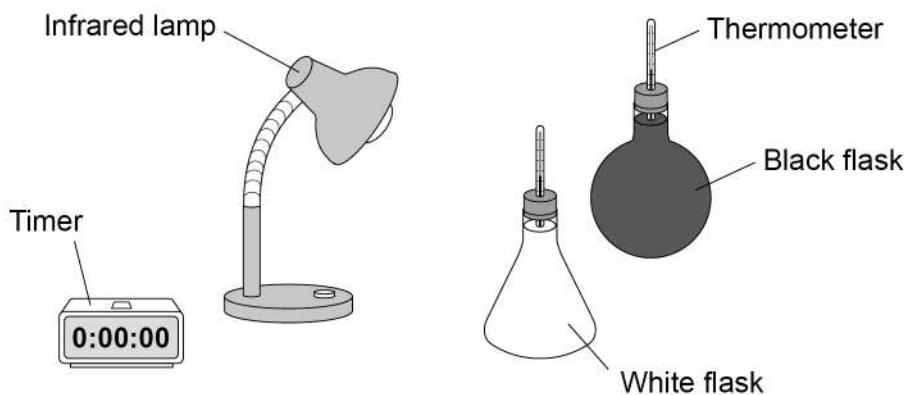
Turn over ►

1 3

There are no questions printed on this page

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**


0 5

A student investigated how the colour of a surface affects the amount of infrared radiation the surface absorbs.

Figure 7 shows the equipment used.

The two flasks are painted different colours.

Figure 7

This is the method used.

1. Pour water at 20 °C into each flask.
2. Place a bung and thermometer into each flask.
3. Place each flask in front of the infrared lamp.
4. Measure the temperature of the water every 30 seconds for 10 minutes.

0 5 . 1 Explain **two** improvements to the method the student used.

[4 marks]

1 _____

2 _____



Turn over ►

Figure 8 shows the results for each flask.

Figure 8

0 5 . 2 Complete the sentences.

[2 marks]

After 100 seconds the temperature difference between the black flask and the white flask was _____ °C

The temperature of the white flask stopped increasing. The temperature inside the black flask continued to increase for a further _____ seconds.

0 | 5 . 3 The initial rate of absorption of infrared radiation by the black flask was greater than the initial rate of absorption by the white flask.

How does **Figure 8** show this?

[1 mark]

0 5 . 4 Explain why the temperature of the water in the flasks increased and then became constant.

[4 marks]

11

Turn over for the next question

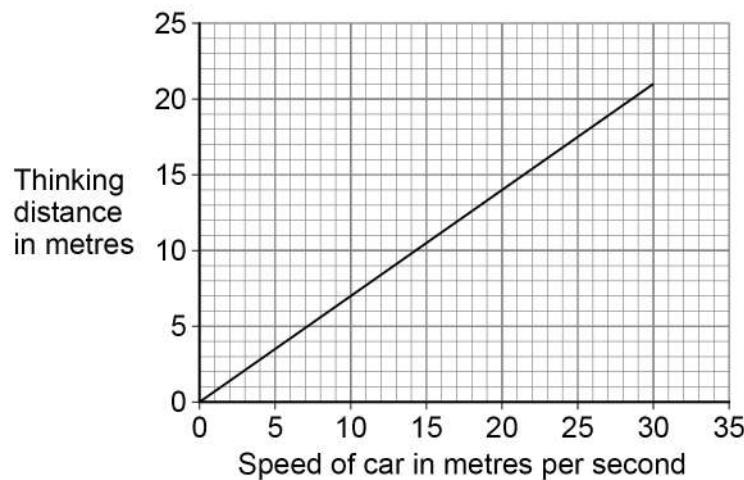
Turn over ►

There are no questions printed on this page

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**

1 8


IB/M/Jun22/8464/P/2H

0 6

The distance a car travels during the driver's reaction time is called the thinking distance.

0 6 . 1

Figure 9 shows how thinking distance depends on speed for a car.

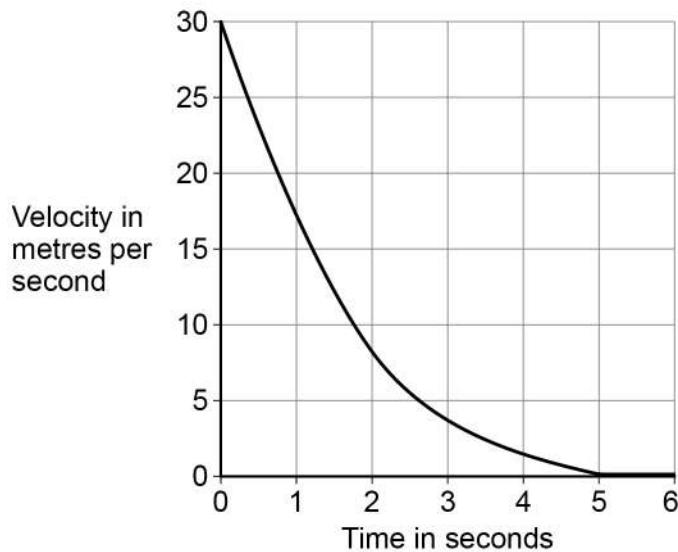
Figure 9

Determine the driver's reaction time.

Use the Physics Equations Sheet.

[3 marks]

Reaction time = _____ s


Question 6 continues on the next page

Turn over ►

0 6 . 2 Figure 10 shows how the velocity of a car changes during braking.

Figure 10

Determine the braking distance of the car.

[3 marks]

Braking distance = m

Do not write outside the box

0 6 . 3 Explain how the gradient of the line on **Figure 10** shows that the resultant force on the car was **not** constant.

[3 marks]

9

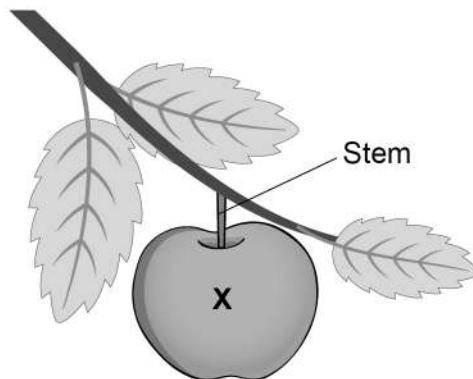
Turn over for the next question

Turn over ►

There are no questions printed on this page

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**



0 7

Figure 11 shows a stationary apple hanging from a tree.

The **X** marks the centre of mass of the apple.

Figure 11

0 7 . 1

Draw **two** arrows on **Figure 11** to show the forces acting on the apple.

[2 marks]

Question 7 continues on the next page

Turn over ►

2 3

0 7 . 2 It takes 0.50 s for the apple to fall to the ground.

Do not write outside the box

The initial velocity of the apple is 0 m/s

acceleration due to gravity = 9.8 m/s²

Calculate the distance fallen by the apple.

Use the Physics Equations Sheet.

[6 marks]

Distance = _____ m

07.3 In Question 07.2 it was assumed that the acceleration was a constant 9.8 m/s^2

Evaluate this assumption.

[4 marks]

Do not write outside the box

12

END OF QUESTIONS

There are no questions printed on this page

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**

2 6

IB/M/Jun22/8464/P/2H

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

2 2 6 G 8 4 6 4 / P / 2 H

2 8

IB/M/Jun22/8464/P/2H