

Please write clearly in block capitals.

Centre number

--	--	--	--	--

Candidate number

--	--	--	--

Surname

Forename(s)

Candidate signature

I declare this is my own work.

GCSE BIOLOGY

H

Higher Tier Paper 1H

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator.

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

J U N 2 2 8 4 6 1 1 H 0 1

IB/M/Jun22/E20

8461/1H

There are no questions on this page

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**

0 2

IB/M/Jun22/8461/1H

Answer **all** questions in the spaces provided.

0 1 This question is about cells and transport.

0 1 . 1 Complete **Table 1**. **[3 marks]**

Table 1

Name of cell part	Function of cell part
	Contains genetic information
Mitochondria	
	Controls the movement of substances into and out of the cell

Cells in potatoes are plant cells.

Cells in potatoes do **not** contain chloroplasts.

0 1 . 2 What is the function of chloroplasts?

[1 mark]

0 1 . 3 Name **one** type of cell in a potato plant that does **not** contain chloroplasts.

[1 mark]

Question 1 continues on the next page

Turn over ►

A student investigated the effect of salt concentration on pieces of potato.

This is the method used.

1. Cut three pieces of potato of the same size.
2. Record the mass of each potato piece.
3. Add 150 cm³ of 0.4 mol/dm³ salt solution to a beaker.
4. Place each potato piece into the beaker.
5. After 30 minutes, remove each potato piece and dry the surface with a paper towel.
6. Record the mass of each potato piece.
7. Repeat steps 1 to 6 using different concentrations of salt solution.

0 1 . 4 What is the independent variable in the investigation?

[1 mark]

Tick (✓) one box.

Concentration of salt solution

Mass of potato piece

Time potato is left in salt solution

Volume of salt solution

0 1 . 5 Why did the student dry the surface of each potato piece with a paper towel in step 5?

[1 mark]

The student calculated the percentage change in mass of each potato piece.

0 1 . 6 For one potato piece:

- the starting mass was 2.5 g
- the end mass was 2.7 g.

Calculate the percentage increase in mass of the potato piece.

[2 marks]

Use the equation:

$$\text{percentage increase in mass} = \frac{\text{increase in mass}}{\text{starting mass}} \times 100$$

Percentage increase in mass = _____ %

Question 1 continues on the next page

Turn over ►

0 5

IB/M/Jun22/8461/1H

The student used the results from each potato piece to calculate the mean percentage change in mass at each concentration.

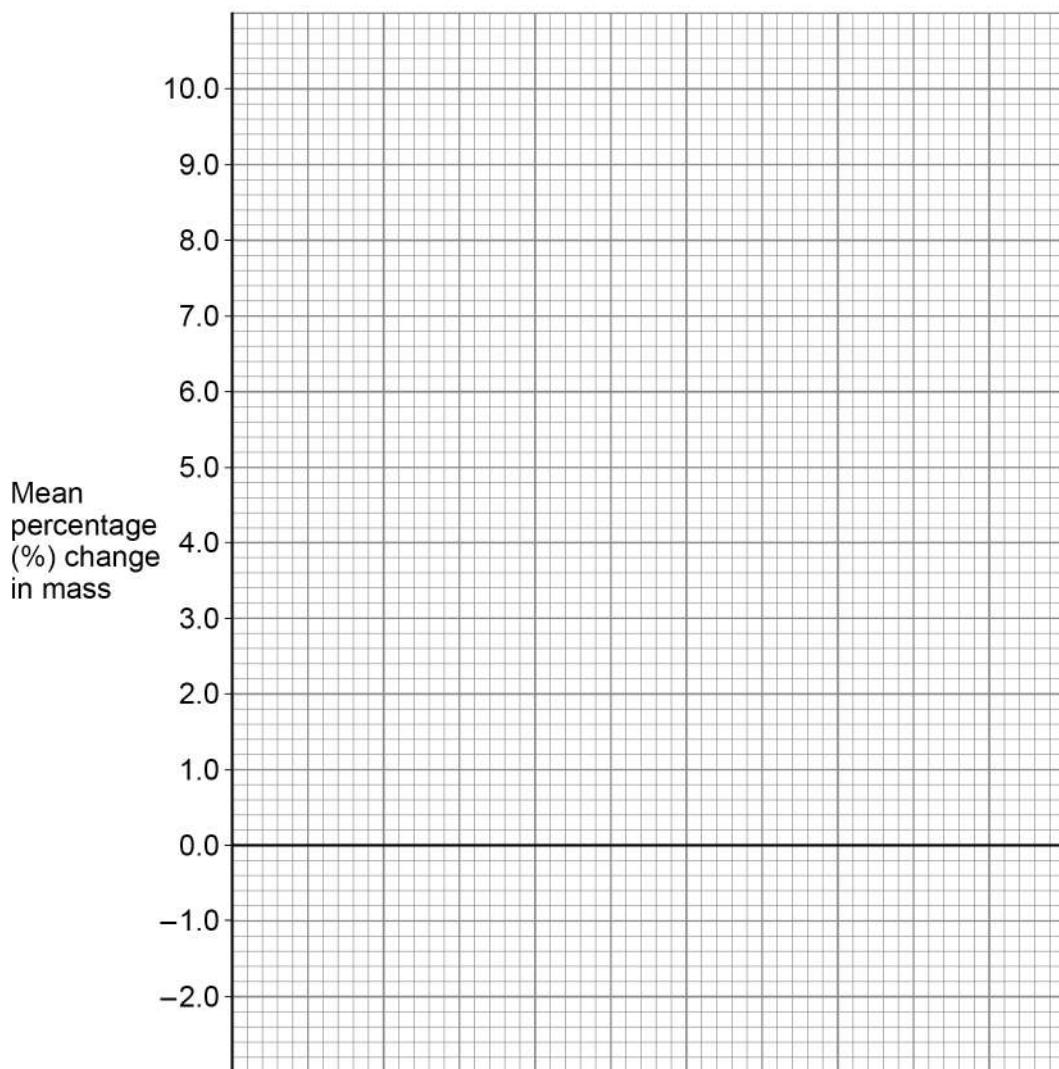
Table 2 shows the results.

Table 2

Concentration of salt solution in mol/dm ³	Mean percentage (%) change in mass
0.0	9.8
0.1	9.5
0.2	7.0
0.3	0.4
0.4	-1.4

0 1 . 7 Complete **Figure 1**.

You should:


- label the x-axis
- use a suitable scale for the x-axis
- plot the data from **Table 2**
- draw a line of best fit.

[4 marks]

Figure 1

Do not write
outside the
box

0 1 . 8 What concentration of salt solution was equal to the concentration of the solution inside the potato pieces?

Use **Figure 1**.

[1 mark]

Concentration = _____ mol/dm³

Question 1 continues on the next page

Turn over ►

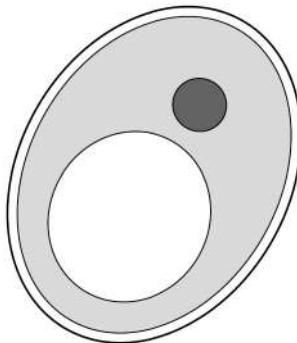
0 1 . 9

Explain why the potato pieces in the 0.4 mol/dm^3 salt solution decreased in mass.

[3 marks]

17

0 8


IB/M/Jun22/8461/1H

0 2

Plant cells and fungal cells are similar in structure.

Figure 2 shows a fungal cell.

Figure 2

0 2 . 1

Name **one** structure in **Figure 2** which is present in both plant cells and fungal cells but **not** in animal cells.

[1 mark]

0 2 . 2

Which disease is caused by a fungus?

[1 mark]

Tick (✓) **one** box.

Gonorrhoea

Malaria

Measles

Rose black spot

Question 2 continues on the next page

Turn over ►

0 9

IB/M/Jun22/8461/1H

0 2 . 3 A fungal cell divides once every 90 minutes.

How many times would this fungal cell divide in 24 hours?

[2 marks]

Number of times cell divides in 24 hours = _____

1 0

IB/M/Jun22/8461/1H

Some types of fungal cell are grown to produce high-protein food.

The high-protein food can be used to make meat-free burgers.

0 2 . 4 Where is protein digested in the human digestive system?

[1 mark]

Tick (✓) **one** box.

Large intestine

Liver

Salivary glands

Stomach

0 2 . 5 Which chemical could be used to test if the burgers contain protein?

[1 mark]

Tick (✓) **one** box.

Benedict's reagent

Biuret reagent

Ethanol

Iodine solution

Question 2 continues on the next page

Turn over ►

0 2 . 6

Table 3 shows some information about burgers made from meat and meat-free burgers.

Do not write
outside the
box

Table 3

	Mass per 100 g of burger	
	Burgers made from meat	Meat-free burgers
Protein in g	14.0	9.0
Fibre in g	0.9	5.5
Fat in g	16.0	5.2
Carbohydrate in g	15.5	15.1
Cholesterol in mg	120.0	0.0

Evaluate the use of burgers made from meat compared with meat-free burgers in providing humans with a healthy, balanced diet.

Use information from **Table 3** and your own knowledge.

[6 marks]

Do not write outside the box

12

Turn over for next question

Turn over ►

0 3

A student prepared some onion cells.

The student viewed the onion cells using a light microscope.

This is the method used.

1. Cut an onion into pieces using a sharp knife.
2. Peel off a thin layer of onion epidermis from one piece of onion.
3. Place the onion epidermis onto a microscope slide in a single flat layer.
4. Add three drops of iodine solution.
5. Slowly lower a cover slip at an angle onto the onion epidermis.
6. Place the slide on the stage of the microscope.

0 3 . 1

Table 4 shows a risk assessment for this experiment.

Complete **Table 4**.

[2 marks]

Table 4

Hazard	Risk	Plan to minimise risk
Iodine solution is an irritant	May cause allergic reaction or skin rash	
Sharp knife		

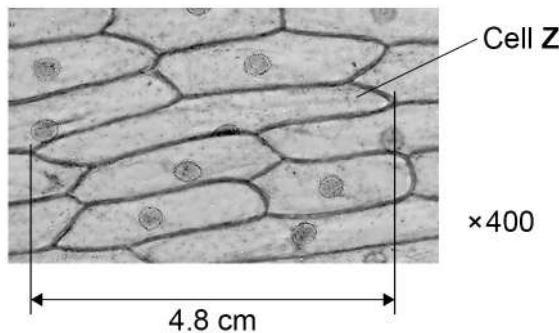
0 3 . 2 Give a reason for each of the following steps in the method.

[3 marks]

A **thin layer** of onion epidermis is used.

Iodine solution is added to the onion epidermis.

The cover slip is lowered onto the onion epidermis **at an angle**.


Question 3 continues on the next page

Turn over ►

Figure 3 shows what the student saw under the microscope at a magnification of $\times 400$.

Figure 3

0 3 . 3 The length of cell Z in **Figure 3** is 4.8 cm.

Calculate the real length of cell Z.

Give your answer in micrometres (μm).

[5 marks]

Real length of cell **Z** = μm

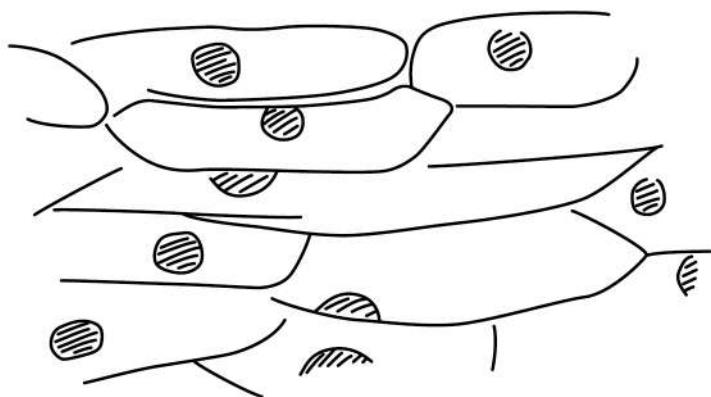


Figure 4 shows the student's drawing of Figure 3.

Do not write outside the box

Figure 4

ONION CELLS

0 3 . 4 Give **two** ways the student could improve the drawing in **Figure 4**.

[2 marks]

1 _____

2 _____

0 3 . 5 Onion cells can be seen using an electron microscope.

Give **two** ways onion cells would look different when seen using an electron microscope.

[2 marks]

1 _____

2 _____

14

Turn over for the next question

Turn over ►

1 7

IB/M/Jun22/8461/1H

0 4

Plants and animals have many defence responses.

0 4 . 1

Table 5 shows some plant defences.

Identify whether each defence is a chemical response or a physical response.

[2 marks]

Tick (✓) **one** box in each row.

Table 5

Plant defence	Type of response	
	Chemical	Physical
Thick, waxy layer on leaf surface		
Berries that are poisonous		
Bark on trees that falls off		

Mimicry is a mechanical adaptation seen in both plants and animals.

Figure 5 shows two insects.

Figure 5

Hornet

Hornet Moth

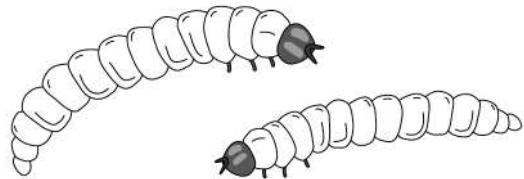
0 4 . 2 Hornets are insects that sting other animals and cause pain.

Hornet moths do **not** sting other animals.

Suggest how mimicry helps the **hornet moth** survive.

[1 mark]

Question 4 continues on the next page


Turn over ►

Adult hornet moths lay eggs that hatch into larvae.

Figure 6 shows the larvae of a hornet moth.

Figure 6

0 4 . 3 The larvae of the hornet moth:

- live inside the roots of trees
- use the tree roots as a source of food
- cause damage to the tree roots.

Explain why a tree might die if the roots of the tree are damaged.

[6 marks]

Do not write outside the box

0 4 . 4 The larvae of the hornet moth form when fertilised eggs divide by mitosis.

Describe how mitosis produces two genetically identical cells.

[4 marks]

0 4 . 5 The cells which are first formed from the fertilised eggs of the hornet moth are stem cells.

Name the process by which these stem cells then form specialised cells.

[1 mark]

14

Turn over for the next question

Turn over ►

There are no questions printed on this page

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**

2 2

IB/M/Jun22/8461/1H

0 5

Water and carbon dioxide are exchanged between leaves and the atmosphere through pores called stomata.

0 5 . 1

Name the cells that control the opening and closing of the stomata.

[1 mark]

Water moves through a plant in the transpiration stream.

0 5 . 2

Describe **two** differences between the transpiration stream and translocation.

[2 marks]

1 _____

2 _____

0 5 . 3

Which environmental conditions would cause the rate of transpiration to be greatest in a plant?

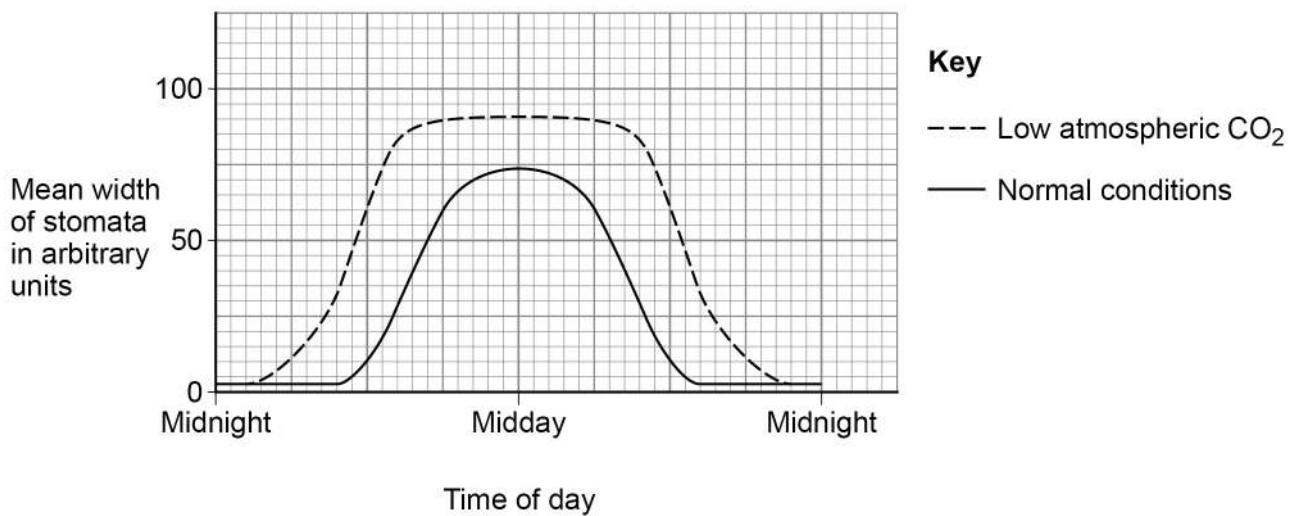
[1 mark]

Tick (✓) **one** box.

Cold with low humidity

Cold with high humidity

Warm with low humidity


Warm with high humidity

Turn over ►

Figure 7 shows information about the mean width of the stomata in a plant.

Figure 7

0 5 . 4 The changes in the mean width of the stomata in **normal conditions** are an advantage to the plant.

Explain how.

[4 marks]

0 5 . 5 The changes in the mean width of the stomata in low atmospheric carbon dioxide are different from the changes in normal conditions.

Explain how the difference helps the plant to survive in low atmospheric carbon dioxide.

[2 marks]

10

Turn over for the next question

Turn over ►

2 5

IB/M/Jun22/8461/1H

0 6**Table 6** shows information about five different organisms.Do not write
outside the
box**Table 6**

Organism	Surface area in m^2	Volume in m^3	Surface area to volume ratio
A	6.04×10^{-8}	1.65×10^{-12}	36606:1
B	3.21×10^{-3}	1.25×10^{-6}	2568:1
C	9.96×10^{-3}	1.35×10^{-4}	X:1
D	4.61×10^{-1}	1.57×10^{-2}	29:1
E	1.99×10^1	6.12×10^0	3:1

0 6 . 1 Calculate value **X** in **Table 6**.

Give your answer to the nearest whole number.

[3 marks]

X (nearest whole number) = _____**0 6 . 2** What is the relationship between the size of an organism and its surface area to volume ratio?Use **Table 6**.**[1 mark]**

0 6 . 3 Organism **B** exchanges gases with the environment directly through its skin.

Organism **D** exchanges gases with the environment using its respiratory system.

Explain why organism **D** requires a respiratory system, but organism **B** does **not** require a respiratory system.

[2 marks]

Question 6 continues on the next page

Turn over ►

Table 6 is repeated below.

Table 6

Organism	Surface area in m^2	Volume in m^3	Surface area to volume ratio
A	6.04×10^{-8}	1.65×10^{-12}	36606:1
B	3.21×10^{-3}	1.25×10^{-6}	2568:1
C	9.96×10^{-3}	1.35×10^{-4}	X:1
D	4.61×10^{-1}	1.57×10^{-2}	29:1
E	1.99×10^1	6.12×10^0	3:1

Table 7 shows information about organism **D** and organism **E**.

Table 7

Organism	Metabolic rate in arbitrary units
D	890
E	75

Do not write outside the box

0 6 . 4 Organisms **D** and **E** both keep a constant body temperature (warm-blooded).

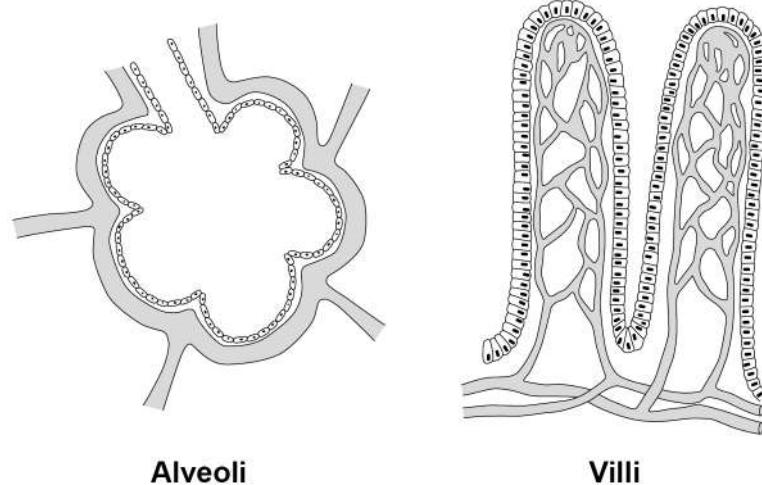
Explain why the metabolic rate of organism **D** is greater than the metabolic rate of organism **E**.

Use information from **Table 6** and **Table 7**.

[4 marks]

Question 6 continues on the next page

Turn over ►



Do not write outside the box

0 6 . 5 Organism **D** and organism **E** both have alveoli in the lungs and villi in the small intestine.

Figure 8 shows some alveoli and some villi.

Figure 8

Describe how the alveoli and the villi are adapted to increase absorption.

[4 marks]

14

Turn over for the next question

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**

Turn over ►

3 1

IB/M/Jun22/8461/1H

0 7

Human immunodeficiency virus (HIV) is a pathogen.

0 7 . 1

Give **one** way HIV can spread from one person to another person.

[1 mark]

Table 8 shows information about new cases of HIV diagnosed in the UK.

Table 8

Year	Number of new HIV cases in women	Number of new HIV cases in men
2010	376	2266
2012	361	2310
2014	397	2370
2016	298	1886
2018	242	1288

0 7 . 2

Describe the trends shown in **Table 8** between 2010 and 2018.

[2 marks]

0 7 . 3

Suggest **one** reason for the change in the number of new HIV cases between 2014 and 2018.

[1 mark]

0 7 . 4

Calculate the ratio of new cases of HIV in women to new cases of HIV in men in 2018.

Give your answer to 3 significant figures.

[3 marks]

Ratio (3 significant figures) = _____ : 1

0 7 . 5

In the UK population the total number of women is greater than the total number of men.

The data in **Table 8** is used to compare the proportions of new cases of HIV in the population for men and women.

Suggest how the data could be presented differently so that a more valid comparison can be made.

[1 mark]

Question 7 continues on the next page

Turn over ►

Scientists have been working to produce a vaccine for HIV for many years.

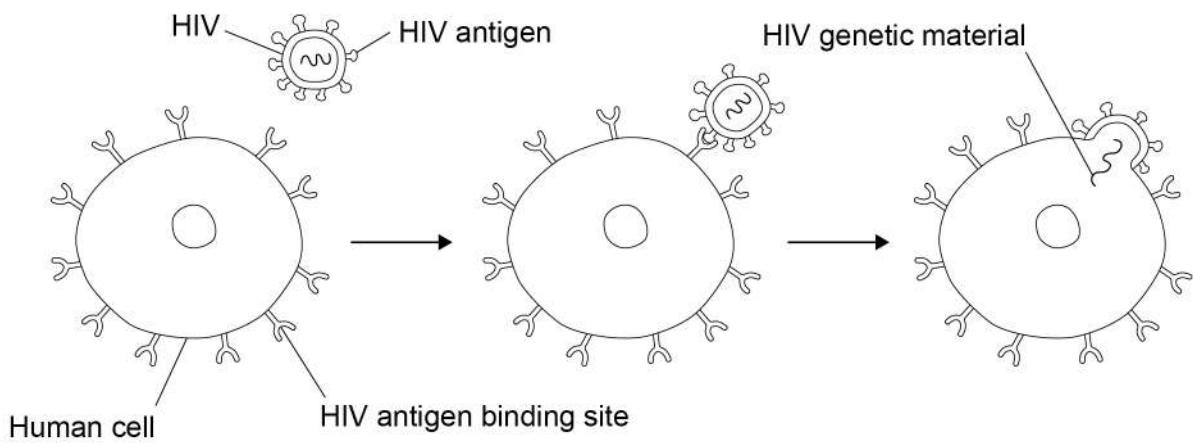
0 7 . 6 Explain how a vaccine for HIV could work to prevent a person developing HIV infection.

[4 marks]

A person with late stage HIV infection has AIDS.

Scientists have produced monoclonal antibodies for HIV.

The monoclonal antibodies can prevent a person infected with HIV developing AIDS.


0 7 . 7 Describe how the monoclonal antibody for HIV can be produced.

[4 marks]

0 7 . 8 **Figure 9** shows how HIV enters a human cell.

Figure 9

Suggest how the monoclonal antibody for HIV helps to prevent a person infected with HIV developing AIDS.

Use information from **Figure 9**.

[3 marks]

19

END OF QUESTIONS

3 5

IB/M/Jun22/8461/1H

There are no questions printed on this page

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**

3 6

IB/M/Jun22/8461/1H

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	<p style="text-align: center;">Additional page, if required. Write the question numbers in the left-hand margin.</p>

Question number	<p style="text-align: center;">Additional page, if required. Write the question numbers in the left-hand margin.</p>

There are no questions printed on this page

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

4 0

2 2 6 G 8 4 6 1 / 1 H

IB/M/Jun22/8461/1H